## Different fluoride anion sources and (trifluoromethyl)trimethylsilane: molecular structure of tris(dimethylamino)sulfonium big(trifluoromethyl)trimethylsilicenete, the first isolated pertagoarding

bis(trifluoromethyl)trimethylsiliconate, the first isolated pentacoordinate silicon species with five Si–C bonds

Alexander Kolomeitsev,\*a German Bissky,<sup>b</sup> Enno Lork,<sup>b</sup> Valery Movchun,<sup>a</sup> Eduard Rusanov,<sup>a</sup> Peer Kirsch<sup>c</sup> and Gerd-Volker Röschenthaler\*<sup>b</sup>

- <sup>a</sup> Institute of Organic Chemistry, Ukrainian National Academy of Sciences, Murmanskaya 6, 253660 Kiev-94, Ukraine
- <sup>b</sup> Institut für Anorganische und Physikalische Chemie, Universität Bremen, Leobener Strasse, D-28334 Bremen, Germany. E-mail: j18j@zfn.uni-bremen.de
- <sup>c</sup> MERCK KGaA, Liquid Crystals Division, Frankfurter Strasse 250, Darmstadt 64293, Germany

Received (in Cambridge, UK) 11th March 1999, Accepted 20th April 1999

(Trifluoromethyl)trimethylsilane, CF<sub>3</sub>SiMe<sub>3</sub> reacts with  $[(Me_2N)_3S]^+[Me_3SiF_2]^-, Q^+F^- and Q^+[HF_2]^-(Q^+ = Me_4N^+, [(Me_2N)_3C]^+, [(Me_2N)_4P]^+) at -70 to 50 °C to afford the first hypervalent silicon species, <math>[(CF_3)_2SiMe_3]^-$  with five Si–C bonds (stable in monoglyme up to -10 °C) as the main reactive species whose molecular structure was determined by X-ray crystallography.

One of the most useful reagents for anionic trifluoromethylation of different organic and organometallic electrophiles is (trifluoromethyl)trimethylsilane.<sup>1,2</sup> The instability of the corresponding lithium and magnesium counterparts (CF<sub>3</sub>Li and CF<sub>3</sub>MgX decompose even at -100 °C) and the reduced nucleophilicity of trifluoromethyl derivatives of zinc, cadmium and copper makes CF<sub>3</sub>SiMe<sub>3</sub> indispensable in many cases.<sup>3,4</sup> For the generation of ' $CF_3^{-}$ ' in the presence of a catalytic<sup>4</sup> or stoichiometric<sup>5</sup> quantity of fluoride anion an intermediary hypervalent silicon species has not so far been found.<sup>4,6a</sup> This led to the conclusion<sup>4</sup> that the highly basic nature of the ' $CF_3$ anion together with the high propensity to eliminate  $\alpha$ -fluoride renders the pentavalent  $CF_3$  intermediate elusive. Investigation of the Me<sub>3</sub>SiCF<sub>3</sub>-Me<sub>4</sub>N<sup>+</sup>F<sup>-</sup> system in CD<sub>3</sub>CN revealed Me<sub>3</sub>SiF and CF<sub>3</sub>D as the only reaction products.<sup>4</sup> Furthermore, if Me<sub>3</sub>SiCF<sub>3</sub>-Me<sub>4</sub>N<sup>+</sup>F<sup>-</sup> is reacted in MeCN the anion [Me<sub>3</sub>-Si(CH<sub>2</sub>CN)(F)]<sup>-</sup> was found, but no CF<sub>3</sub> containing the hypervalent silicon derivative was found.<sup>6b</sup> It is noteworthy that the generation, structures and spectral properties and reactivities of fluorosiliconates  $[R_nSiF_{5-n}]^-$  and  $[R_nSiF_{6-n}]^{2-}$  (n = 1-3) have been extensively studied.<sup>7</sup> Despite the fact that fluorine directly bonded to hypervalent silicon has a stabilizing effect, no reports have appeared, to the best of our knowledge, describing their isolation and reliable characterization of  $[(CF_3)_2SiF_3]^-$  and  $[CF_3SiF_4]^-$  in the solid state.<sup>8a</sup> Lithium pentaphenylsiliconate was observed in solution at -80 °C.8b Investigation of species formed in the course of Me<sub>3</sub>SiCF<sub>3</sub>

interaction with fluoride ions is very important for designing selective high-yield trifluoromethylation procedures of synthetical and possible practical use.

Studying the Lewis acidic properties of  $P(CF_3)_3$  we observed that a 1:2:1 mixture of  $[(Me_2N)_3S]^+[Me_3SiF_2]^--CF_3SiMe_3 P(CF_3)_3$  in THF yielded the stable acyclic phosphoranide,  $[P(CF_3)_4]^-$  at -55 °C together with 5-10%  $[P(CF_3)_3F]^$ impurity.<sup>9</sup> However, if  $Me_4NF-CF_3SiMe_3(1:2-2.5)$ , forming a clear solution at -60 °C in glyme was used and  $P(CF_3)_3$  was added at -60 °C, analytically pure  $[P(CF_3)_4]^-$  was obtained.<sup>10</sup> A trifluoromethylating species has been pre-generated, which we tried to elucidate by reacting  $CF_3SiMe_3$  with a range of fluoride ion sources.

Here we report results obtained for CF3SiMe3 1 reactions with  $Q^{+}[Me_{3}SiF_{2}]^{-}2a$ , <sup>11,12</sup>  $Q^{+}F^{-}$ , **3b-d** and  $Q^{+}HF_{2}^{-}$ , **4b-d** [a:  $Q^+ = (Me_2N)_3S^+, b: Q^+ = Me_4N^+, ^{13} c: Q^+ = [(Me_2N)_3C]^+, ^{14}$  $\mathbf{d}$ :  $\mathbf{Q}^+ = [(Me_2N)_4P]^{+15}$ ).  $\dagger$  When 1 was added to a suspension of **2a** or **3b–d** (2:1 ratio) in monoglyme at -50 °C or in THF at 78 °C, the solids were immediately dissolved to form a stable colourless solution of the siliconates, Q+[(CF<sub>3</sub>)<sub>2</sub>SiMe<sub>3</sub>]-, 6a-d in 95% yield (Scheme 1) with  $\delta_{\rm F}$  in the range -63.6 to -63.8, approximately 3.2-3.6 ppm downfield of the CF<sub>3</sub>SiMe<sub>3</sub> resonance.<sup>‡</sup>§ After recrystallization of **6a** monitored by <sup>19</sup>F NMR spectroscopy only one species with  $\delta_{\rm F}$  -63.7 was present, namely  $(Me_2N)_3S^+$  [(CF<sub>3</sub>)<sub>2</sub>SiMe<sub>3</sub>]<sup>-</sup> 6a the first isolated pentacoordinate silicon species having five Si-C binds, proven by single-crystal X-ray structural determination (Fig. 1).¶ The new compound is stable in the solid state upto 0 °C but decomposes exothermally at 0-5 °C with the formation of 2a. The same reaction has been observed in monoglyme solution of 6b at -30 °C with the quantitative formation of Me<sub>4</sub>N+[F<sub>2</sub>SiMe<sub>3</sub>]<sup>-</sup> **2b** proven by <sup>19</sup>F NMR and single-crystal X-ray diffraction. The corresponding **6d** decomposes at -10-0 °C to give **2d**. Obviously, the size of the counter ion plays an important role in the thermal stability of [(CF<sub>3</sub>)<sub>2</sub>SiMe<sub>3</sub>]<sup>-.8b</sup> Expected reaction





Fig. 1 Crystal structure of 6a with thermal ellipsoids. Selected bond lengths (pm) and angles (°): Si(1)-C(1) 205.6(4), Si(1)-C(2) 206.2(4), Si(1)-C(3) 188.2(5), Si(1)–C(4) 188.6(3); C(3)–Si(1)–C(4) 120.85(12), C(3)–Si(1)– C(1) 91.0(2), C(3)-Si(1)-C(2) 89.6(2), C(1)-Si(1)-C(2) 179.40(19).

products<sup>16</sup> of difluorocarbene with monoglyme or THF were not detected. Addition of 1 to 3c in THF at -80 °C afforded 6c  $(\delta_{\rm F}$  -63.7) as the sole product, which upon warming to -50 °C gave slowly  $(Me_2N)_3CCF_3$  7 and 1 (Scheme 1), at -30 °C the formation of 7 proceeds much faster and was complete in 1 h along with gaseous Me<sub>3</sub>SiF and CF<sub>3</sub>H impurity.<sup>††</sup> In the case of hydrogen difluorides and compound 1, a 1:3 ratio has to be applied to convert 4b-d at -80 °C into the fluorides 3b-d under formation of CF<sub>3</sub>H and Me<sub>3</sub>SiF (Scheme 1) and subsequently 6b-d are formed.

Probably the siliconates 5a-d containing the  $[(CF_3)Si(F)Me_3]^-$  anion were produced initially as intermediates releasing [CF3]<sup>-</sup> to attack CF3SiMe3 yielding  $[(CF_3)_2SiMe_3]^-$ . So far, there is no direct spectroscopical observation of [(CF<sub>3</sub>)Si(F)Me<sub>3</sub>]<sup>-</sup>, whereas the isoelectronic phosphorane, (CF<sub>3</sub>)P(F)Me<sub>3</sub> could be isolated and fully characterized.17

The single crystal X-ray structure determination of 6a showed almost ideal trigonal-bipyramidal geometry at silicon [C(1)-Si(1)-C(2) 179.40(19), C(3)-Si-C(1) 91.0(2) and C(3)-Si–C(4) 120.85(12)°] with a rather long<sup>4</sup> apical Si–C(1)F<sub>3</sub> bond [205.6(4)] and a considerably shorter equatorial Si-C(1)H<sub>3</sub> bond [188.2(5) pm] (cf. 187.4 pm in  $2a^{12}$ ). For the isoelectronic (CF<sub>3</sub>)<sub>2</sub>PMe<sub>3</sub> the same structure was found with shorter P-C distances<sup>18</sup> [P-CF<sub>3</sub> 197.4(4) and P-CH<sub>3</sub> 181.3(2) pm]. The geometry parameters of the cation (Me<sub>2</sub>N)<sub>3</sub>S<sup>+</sup> are similar to those investigated earlier.12

The use of the hypervalent trifluoromethylating silicon compounds for new carbon-carbon bond forming reactions and synthesis of trifluoromethylated phosphorus(v) derivatives is underway in our laboratories. The results of the study for CF<sub>3</sub>SiF<sub>3</sub> and CF<sub>3</sub>SiPh<sub>3</sub> interaction with the different fluoride anion sources including (Et<sub>2</sub>N)<sub>3</sub>PF<sub>2</sub> and Ph<sub>3</sub>CF and reactions of  $(Me_2N)_3CCF_3$  will be published in due course.

A. A. K. is grateful to the Deutsche Forschungsgemeinschaft for financial support. The generous gift of CF<sub>3</sub>SiMe<sub>3</sub> by Bayer AG, Leverkusen (Germany) is gratefully acknowledged.

## Notes and references

† All reactions were performed under nitrogen in carefully dried solvents. Compound 7 gave satisfactory elemental analysis. NMR spectra at 200.13 (1H, TMS), 188.31 (19F, CClF<sub>3</sub>), 50.32 MHz (13C, TMS) were recorded.

*†* General procedure for **6b–d**: to a solution of the corresponding fluoride 2a-d (0.2 mmol) in monoglyme or THF (5 ml) has added 0.06 g (0.42 mmol) of 1. The use of corresponding bifluorides gave the same products but the molar ratio of bifluoride to silane was 1:3 in this case. Selected data for **6b–d**:  $\delta_{\rm F}$  –63.67 (**6b**), –63.94 (**6c**), –63.82 (**6d**), –64.83 (**2b**), –64.75 (2d).

§ Synthesis of **6a**: to a solution of 0.41 g (1.49 mmol) **2a** in 5 ml monoglyme was condensed 0.45 g (3.13 mmol) 1 and the mixture stirred for 3 h at  $-55 \text{ °C}, \delta_{\text{F}} - 64.04$ . Yield: 95%

¶ Crystal data for **6a**:  $C_{11}H_{27}F_6N_3SSi$ , M = 375.51, monoclinic, space group  $P2_1/m$ , a = 769.8(2), b = 1132.1(2), c = 1135.6(2) Å,  $\beta 105.26(1)^\circ$ ,  $V = 0.9548(3) \text{ nm}^3$ , Z = 2,  $D_c = 1.306 \text{ g cm}^{-3}$ ,  $\lambda(\text{Mo-K}\alpha) = 0.71073 \text{ Å}$ . Siemens P4 m/v diffractometer,  $\theta$ -2 $\theta$ -scan type,  $2.59 \le \theta \le 24.99^\circ$ , 173 K; 6512 reflections collected, 1775 independent reflections ( $R_{int} = 0.0672$ ), full-matrix least-squares on  $F^2$ , goodness-of-fit ( $F^2$ ) = 1.064, final R values  $[I > 2\sigma(I)]$ : R1 = 0.0476, wR2 = 0.1002, R values (all data): R1 = 0.0774, wR2 = 0.1157, extinction coefficient 0.0103(18), difference electron density: 0.264 and -0.244 e Å<sup>3</sup>. CCDC 182/1232. See http://www.rsc.org/ suppdata/cc/1999/1017/ for crystallographic files in .cif format.

|| Selected data for **2b**:  $\delta_{\rm F}(\rm CD_3CN, -30^{\circ}C) - 60.10; \delta_{\rm H}(\rm CD_3CN, -30^{\circ}C)$ -0.18 (s, Me<sub>3</sub>Si), 3.10 (s, Me<sub>4</sub>N<sup>+</sup>). The geometry parameters, bond lengths and angles for the anion  $[Me_3SiF_2]^-$  in 2b are almost identical with those for 2a<sup>12</sup> within the standard deviation.

†† Selected data for **7**: bp 166–170 °C (decomp.).  $\delta_{\rm H}$  2.33 (<sup>5</sup> $J_{\rm FH}$  1.23 Hz);  $\delta_{\rm F} = -62.48; \ \delta_{\rm C} \ 127.35 \ ({\rm CF}_3, \ {}^1J_{\rm CF} \ 305.6 \ {\rm Hz}), \ 94.24 \ [C({\rm NMe}_2)_3], \ {}^2J_{\rm CF} \ 23.7$ Hz), 39.36 (CH<sub>3</sub>, <sup>4</sup>J<sub>CF</sub> 2.3 Hz).

- 1 G. K. S. Prakash, R. Krishnamurti and G. A. Olah, J. Am. Chem. Soc., 1989. 111. 393.
- 2 I. Ruppert, K. K. Schlich and W. Volbach, Tetrahedron Lett., 1984, 25, 2195
- 3 D. J. Burton and Z. Y. Yang, Tetrahedron, 1992, 48, 189.
- 4 G. K. S. Prakash and A. K. Yudin, *Chem. Rev.*, 1997, 97, 757.
  5 (a) A. A. Kolomeitsev, V. N. Movchun and Yu. L. Yagupolskii, Synthesis, 1990, 1151; (b) A. A. Kolomeitsev, V. N. Movchun and Yu. L. Yagupolskii, W. Porwisiak and W. Dmowskii, Tetrahedron Lett., 1992, 41, 6191.
- 6 (a) C. R. J. P. Corriu, C. Reye and J. C. Young, Chem. Rev., 1993, 93, 1371; (c) R. Damrauer and J. A. Hankin, Chem. Rev., 1995, 95, 1145; (b) D. J. Adams, J. H. Clark, L. B. Hansen, V. C. Sanders and S. J. Tavener, J. Fluorine Chem., 1998, 92, 123.
- 7 (a) H. J. Frohn and V. V. Bardin, J. Organomet. Chem., 1995, 501, 155 and references cited therein; (b) A. S. Pilcher and P. DeShong, J. Org. Chem., 1996, 61, 6901.
- 8 (a) H. Beckers, H. Bürger and R. Eujen, Z. Anorg. Allg. Chem., 1988, 563, 39; (b) A. H. J. F. de Keijzer, F. J. J. de Kanter, M. Schakel, R. F. Schmitz and G. W. Klumpp, Angew. Chem., 1996, 108, 1183 and references therein.
- 9 Because of the high phosphorus affinity to fluorine, [P(CF<sub>3</sub>)<sub>3</sub>F]<sup>-</sup> even being treated with excess of  $Me_3SiCF_3$  cannot be transformed quantitatively into [P(CF<sub>3</sub>)<sub>4</sub>]<sup>-</sup>, cf. A. A. Kolomeitsev and G.-V. Röschenthaler, 12th ACS Winter Fluorine Conference, St. Petersburg Beach, FL, USA, January 22-27, 1995, abstract 48.
- 10 A. A. Kolomeitsev, N. V. Pavlenko, A. B. Rozhenko, U. Dieckbreder, M. Görg and G.-V. Röschenthaler, 15th International Symposium on Fluorine Chemistry, Vancouver, Canada, August 2-7, 1997, Abstract In (2) C-6.
- 11 W. J. Middleton, US Pat. N3, 940, 402, 1976.
- 12 D. A. Dixon, W. B. Farnham, W. Heilemann, R. Mews and M. Noltemeyer, Heteroat. Chem., 1993, 4, 287 and references therein.
- 13 A. A. Kolomeitsev, F. U. Seifert and G.-V. Röschenthaler, J. Fluorine Chem., 1995, 71, 47.
- 14 S. M. Igumnov, N. I. Delyagina and I. L. Knunyants, Izv. Akad. Nauk SSSR, Ser. Khim., 1986, 1193 and references therein.
- 15 A. A. Kolomeitsev, N. V. Kirij, W. K. Appel, S. V. Pazenok, G.-V. Röschenthaler, 14th ACS Winter Fluorine Conference, St. Petersburg Beach, January 17-22, 1999, abstract 37.
- 16 (a) R. Möckel, W. Tyrra and D. Naumann, J. Fluorine Chem., 1995, 73, 229 and references therein; (b) C.-M. Hu, F.-L. Qing and C.-X. Shen, J. Chem. Soc., Perkin Trans. 1, 1993, 335.
- 17 A. A. Kolomeitsev, Yu. L. Yagupolskij, A. Gentzsch, E. Lork and G.-V. Röschenthaler, Phosphorus, Sulfur Silicon, 1994, 92, 179.
- 18 A. A. Kolomeitsev, U. Dieckbreder, M. Görg and G.-V. Röschenthaler, Phosphorus Sulfur Silicon, 1996, 109-110, 597.

Communication 9/01953G